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Abstract
The aim of the paper is to establish a non-recursive formula for the general
solution of Fedosov’s ‘quadratic’ fixed-point equation (Fedosov 1994 J. Diff.
Geom. 40 213–38). Fedosov’s geometrical fixed-point equation for a differential
is rewritten in a form similar to the functional equation for the generating
function of Catalan numbers. This allows us to guess the solution. An adapted
example for Kaehler manifolds of constant sectional curvature is considered in
detail. Also for every connection on a manifold a familiar classical differential
will be introduced.

PACS numbers: 02.40.Gh, 02.40.Tt, 04.60.−m, 03.65.−w, 02.10.De

1. Introduction

1.1. Deformation quantization

Let (M,�) be a Poisson manifold. The Poisson bracket { · , · } : C∞(M)[[λ]] ×
C∞(M)[[λ]] → C∞(M)[[λ]], where λ is a formal parameter, is defined by

{f, g} := �ik ∂f

∂xi

∂g

∂xk
.

The central definition in the theory of deformation quantization, established by Weyl and
Moyal [14], Berezin [3, 4], and Bayen, Flato, Frønsdal, Lichnerowicz and Sternheimer [1, 2],
is as follows.

A star product on (M,�) is a binary operation � : C∞(M)[[λ]] × C∞(M)[[λ]] →
C∞(M)[[λ]] with the following properties:

• � is a C[[λ]]-bilinear associative product
• f � g =∑∞

l=0 λlCl(f, g) with bi-differential operators Cl

• 1 � f = f = f � 1
• C0(f, g) = fg

• C1(f, g) − C1(g, f ) = i{f, g}
* Dedicated to the memory of Nikolai Neumaier.
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A star product is continuous in the λ-adic topology.
Two star products on a Poisson manifold are called equivalent if there exists a formal series

E = id +
∑∞

l=1 λlEl of C[[λ]]-linear differential operators El : C∞(M)[[λ]] → C∞(M)[[λ]]
with E(1) = 1, El(1) = 0 for l � 1 and

f � g = E−1(Ef �′ Eg) ∀ f, g ∈ C∞(M)[[λ]].

1.2. Fedosov’s quantization of symplectic manifolds

Fedosov’s geometric construction yields elegant, intrinsically defined formulae for all
equivalence classes of star products on symplectic manifolds and is central for their
classification.

According to Cattaneo, Felder and Tomassini the construction can also be adapted to
globalize Kontsevitch’s formality theorem [12] and construct a star product on any Poisson
manifold [6].

The following sketch slightly differs from the one in [18] and Fedosov’s notation and
construction in [8].

1.2.1. The formal Weyl algebra The formal Weyl algebra W ⊗ �• is central in Fedosov’s
quantization of a symplectic manifold (M,ω). It is defined by the complexified bundles

W ⊗ �• :=
( ∞∏

s=0

�∞(∨sT ∗M ⊗ �•T ∗M)

)
[[λ]].

The C[[λ]]-linear degree maps degs , dega, degλ : W ⊗ �• −→ W ⊗ �• are defined
in the usual way for a factorable tensor of the shape S ⊗ α with S ∈ �∞(∨sT ∗M) and
α ∈ �∞(�kT ∗M) by

degs(S ⊗ α) := s(S ⊗ α)

dega(S ⊗ α) := k(S ⊗ α)

degλ(S ⊗ α) := λ
∂

∂λ
(S ⊗ α).

For a ∈ W ⊗ �k the notation a = ∑
l,s∈N

λlas
l with degs as

l = sas
l , dega as

l = kas
l

and degλ as
l = 0 is used. If degs a = 0 the formal series notation a = ∑

l∈N
λlal with

al ∈ �∞(�kT ∗M) and degλ al = 0 is used.
The projection on the functions C∞(M)[[λ]] is called σ .
For a = f ⊗ α ∈ W ⊗ �k1 and b = g ⊗ β ∈ W ⊗ �k2 by

μ(a ⊗ b) := (f ∨ g) ⊗ (α ∧ β),

an associative graded product μ is canonically defined and satisfies the property

μ(a ⊗ b) = (−1)k1k2μ(b ⊗ a),

called anti- or super commutativity. Also the notation a · b := μ(a ⊗ b) will be used.
A super derivation D : W ⊗ �• → W ⊗ �•+d of degree d is a linear map that satisfies

the Leibniz rule

D(a · b) = (Da) · b + (−1)kda · (Db),

for a ∈ W ⊗ �k . The vector space of super derivations together with the super commutator
[ · , · ], defined by

[D1, D2] := D1 ◦ D2 − (−1)d1d2 D2 ◦ D1

for Di : W ⊗ �• → W ⊗ �•+di , is a super Lie algebra.
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The degree maps degs , dega, degλ are super derivations with respect to μ.
Let δ : W ⊗ �• −→ W ⊗ �•+1 and δ∗ : W ⊗ �• −→ W ⊗ �•−1 be defined in local

coordinates by

δ := (1 ⊗ dxi)is(∂i) and δ∗ := (dxi ⊗ 1)ia(∂i),

where is and ia are the symmetric and anti-symmetric contraction, respectively. The operators
δ, δ∗ are μ super derivations.

By

δ−1a :=
{ 1

s+k
δ∗a if degs a = sa, dega a = ka and s + k �= 0

0 if a ∈ C∞(M)[[λ]]

and linear continuation another operator δ−1 : W ⊗ �• −→ W ⊗ �•−1 is defined.
Symmetry and grading arguments show that δ2 = (δ∗)2 = (δ−1)2 = 0 is valid. Moreover

one has the following homotopy formula.

Lemma 1.2.1 (Poincaré lemma).

δδ−1 + δ−1δ + σ = id.

With the commuting symmetric insertion derivations the product μ can be deformed
for every symplectic manifold in the Weyl–Moyal product, or in the case when (M, g) is a
pseudo-Kaehler manifold, μ can be deformed in the Wick product as well [5, 16]. Let P be
defined by

P := i

2
�klis(∂k) ⊗ is(∂l),

with the symplectic Poisson tensor � in the Weyl case or

P := 2gklis(∂zk ) ⊗ is(∂zl )

with the Kaehler metric g in the Wick case. The Weyl–Moyal product and the Wick product,
respectively, are defined by

a ◦� b := μ ◦ exp
(
λP
)
(a ⊗ b).

These products ◦� are still graded, fiberwise and associative. Because of the shape of the
Weyl–Moyal product the anti-symmetric degree-map dega and the so-called total degree map
Deg defined by

Deg := degs + 2 degλ

are ◦� derivations. The term of total degree k is a(k) =∑s+2l=k λlas
l .

Let

W ⊗ �• = W (0) ⊗ �• ⊇ W (1) ⊗ �• ⊇ W (2) ⊗ �• ⊇ · · · ⊇ {0}
with

⋂∞
d=0 W (d) ⊗ � = {0}, be the filtration corresponding to the total degree.

Since the symmetric insertion maps commute δ is a super derivation with respect to ◦�.
A bilinear super Lie bracket [ · , · ] is defined by

[a, b] = a ◦� b − (−1)klb ◦� a,

for a ∈ W ⊗ �k and b ∈ W ⊗ �l and

[a, [b, c]] = [[a, b], c] + (−1)kl[b, [a, c]

is called the super Jakobi identity.
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For every a ∈ W ⊗ �k the adjoint action of a in the Lie algebra, the so-called inner
derivation [a, · ] is defined by

[a, · ]b := [a, b].

Because ◦� is associative and grading, the inner derivations satisfy

[a, · ](b ◦� c) = ([a, · ]b) ◦� c + (−1)klb ◦� ([a, · ]c)

and are ◦� super derivations W ⊗ �• → W ⊗ �•+k .
The so-called quasi inner derivations

i

λ
[a, · ]

are also well defined because of the super commutativity of μ. For example the super derivation
δ can be written as a quasi inner derivation

−δ = i

λ
[δ−1ω, · ].

The equation
[
D, i

λ
[a, · ]

] = i
λ

[Da, · ] is valid if D is a ◦� super derivation.
For a connection ∇ obviously ∇∂i

is a μ derivation. The maps ∂ : W ⊗ �• → W ⊗ �•+1

and ∂∗ : W ⊗ �• → W ⊗ �• defined by

∂ := (1 ⊗ dxi)∇∂i
and ∂∗ := (dxi ⊗ 1)∇∂i

are super derivations with respect to μ.
That the following equations are valid

[δ, ∂∗] = ∂, [δ∗, ∂] = ∂∗, [δ, ∂] = 0, [δ∗, ∂∗] = 0

can be shown with the tensor calculus.
A symplectic manifold (M,ω) always admits symplectic connections [13]. Because a

symplectic connection is torsion-free and for f ⊗ α ∈ W ⊗ �• the equation

∂(f ⊗ α) = ∇∂i
f ⊗ dxi ∧ α + f ⊗ dα

is valid.
The Christoffel symbols of a symplectic connection satisfy

∂�kl

∂xi
+ �rl�k

ir + �kr�l
ir = 0,

and from calculation it follows that ∇∂i
is a ◦� derivation. This fact yields that the

map ∂ := (1 ⊗ dxi)∇∂i
, defined with a symplectic connection ∇, is a super derivation

W ⊗ �• → W ⊗ �•+1 with respect to ◦�.

1.2.2. Recursive flat differentials The first main step in Fedosov’s construction is the
existence of flat ◦� super derivations D : W⊗�• → W⊗�•+1 of the shape −δ +∂ + i

λ
[R, · ]

with R ∈ W (2) ⊗ �1. The condition that (−δ + ∂ + i
λ

[R, · ])2 vanishes is equivalent to the
fact that m := ∂ + i

λ
[R, · ] obeys the Maurer–Cartan equation

[−δ,m] + 1
2 [m,m] = 0.

Because of

∂2 = i

λ
[R, · ]

where R is given by

R = 1
4ωkrR

r
lij dxk ∨ dxl ⊗ dxi ∧ dxj

4
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in the Weyl case and

R = i

2
gkrR

r

lij
dzk ∨ dzl⊗dzi ∧ dzj ,

in the Wick case [5, 16], the curvature of the connection gets involved.
The equations

δR = 0 and ∂R = 0

are consequences of the Bianchi identities.
With the Deg-adic topology W (2) ⊗ �1 is a complete ultra-metric space.

Theorem 1.2.2. For a formal series of closed two forms  ∈ λ�∞(�2T ∗M)[[λ]] and every
S ∈ W (3) ⊗ �0 with σ(S) = 0 there exists a unique element R,S ∈ W (2) ⊗ �1 satisfying

δR,S =  + R + ∂R,S +
i

λ
R,S ◦� R,S and δ−1R,S = S.

According to Banach’s fixed-point theorem R,S is the unique solution of the Fedosov fixed-
point equation

R,S = δS + δ−1
(
 + R + ∂R,S +

i

λ
R,S ◦� R,S

)
.

In this case the ◦� super derivation D,S = −δ + ∂ + i
λ

[R,S , · ] is flat.

Since Deg is a ◦� derivation it is true that R,S satisfies the recursion

R,S
(2) = δS(3)

and

R(2+k)
,S = (δS + δ−1(R + ))(2+k) + δ−1

(
∂R(1+k)

,S +
i

λ

k∑
l=1

R(1+l)
,S ◦� R(k+2−l)

,S

)

for k � 1, but a non-recursive formula in this essential theorem is missing in [8].
Furthermore, an example of a non-zero curvature Fedosov construction is missing.
It is the intention of this work to take care and answer these two important issues in the

following sections.

1.2.3. Fedosov star products Let

D,S = −δ + ∂ +
i

λ
[R,S , · ]

be a flat ◦� super derivation D,S : W⊗�• → W⊗�•+1 on the symplectic manifold (M,ω).
The map

D,S
−1 := − 1

1−[δ−1, ∂ + i
λ

[R,S , · ]
]δ−1

is in the Deg-adic topology a well-defined endomorphism D−1
,S : W ⊗ �• → W ⊗ �•−1

because
[
δ−1, ∂ + i

λ
[R,S, · ]

]
is a linear contraction mapping.

Lemma 1.2.3 (Deformed Poincaré lemma).

D,S
−1 D,S + D,SD,S

−1 +
1

1 − δ−1
(
∂ + i

λ
[R,S , · ]

)σ = id.

The deformed Poincaré lemma implies that the Fedosov–Taylor series

τ,S : C∞(M)[[λ]] → W ⊗ �0 ∩ ker D,S

5
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defined by

τ,S(f ) := 1

1 − δ−1
(
∂ + i

λ
[R,S , · ]

)f
is a C[[λ]]-linear bijection with inverse σ .

Theorem 1.2.4. On a symplectic manifold (M,ω) by

f �∇,,S g := σ(τ,S(f ) ◦� τ,S(g))

star products are defined.

In the Weyl case �∇,,S satisfies

f �∇,,S g = fg +
iλ

2
{f, g} + O(λ2),

and in the Wick case �∇,,S satisfies

f �∇,,S g − g �∇,,S f = iλ{f, g} + O(λ2).

Theorem 1.2.5 (Equivalence of Fedosov star products). The two Fedosov star products
�∇,,S and �∇′,′,S ′ on a symplectic manifold (M,ω) are equivalent if and only if

[] = [′] ∈ λH 2
dR(M, C)[[λ]].

Moreover Nest and Tsygan showed in [15] that every star product on a symplectic manifold
is equivalent to a Fedosov star product, which substantiates the importance of the Fedosov
construction in deformation quantization.

2. Non-recursive flat differentials

2.1. Non-recursive classical differentials

The projection on the classical part of a quantum Fedosov super derivation W ⊗ �• →
W ⊗ �•+1 is independent of  ∈ λ�∞(�2T ∗M)[[λ]] and in the degs-adic topology a well-
defined flat μ super derivation [7].

On every manifold there also exists another natural μ super differential W ⊗ �• →
W ⊗ �•+1 of familiar shape in −1 � degs � 0.

Theorem 2.1.1. In the degs-adic topology the map D : W ⊗ �• → W ⊗ �•+1 defined by

D := −exp(∂∗)δ exp(−∂∗)

is a well-defined flat μ super derivation.

Proof. Sorting of D in the symmetric degree shows D = ∑∞
s=−1 Ds , where the super

derivations Ds = − 1
(s+1)!

∑s+1
h=0(−1)h

(
s+1
h

)
(∂∗)s+1−hδ(∂∗)h : W ⊗ �• → W ⊗ �•+1 satisfy

the recursion D−1 = −δ and Ds = 1
s+1 [∂∗,Ds−1] ∀s � 0.

That D squares to zero is easy to see because of δ2 = 0 and the exponential addition
theorem.

Calculation shows

D = −(1 ⊗ dxi)is(∂i) + (1 ⊗ dxi)∇∂i
− 1

2 (dxj ⊗ dxi)(R(∂i, ∂j ) − T m
ij ∇∂m

) + {degs � 2}.
�

6



J. Phys. A: Math. Theor. 43 (2010) 235404 J Löffler

2.2. Non-recursive Fedosov differentials

Applying the geometrical series (1 − δ−1∂)−1 on the Fedosov fixed-point equation

R,S = δS + δ−1( + R) + δ−1∂R,S +
i

2λ
δ−1[R,S ,R,S ]

shows a new ‘quadratic’ fixed-point equation

R,S = R,S + R,S♦R,S

where

R,S := 1

1 − δ−1∂
(δS + δ−1( + R))

is the inhomogeneity and the non-fiberwise binary operation ♦ : (W ⊗ �k) × (W ⊗ �l) →
W ⊗ �k+l−1 defined by

♦ := i

2λ

1

1 − δ−1∂
δ−1[ · , · ]

replaces the fiberwise binary operation i
2λ

δ−1[ · , · ].
The two fixed-point equations are equivalent, in the sense that they define the same unique

fixed point but the linear term δ−1∂ in the contraction mapping, defining the unique fixed point,
is canceled.

The bilinear binary operation ♦ : (W ⊗ �1) × (W ⊗ �1) → W ⊗ �1 is commutative
but non-associative. The next well-known lemma explains why the new fixed-point equation
for R,S should be called the standard ‘quadratic’ fixed-point equation.

Lemma 2.2.1 (Parentheses and Catalan numbers). There exist

Cn := 1

n!

∂n

∂zn

(
1 − √

1 − 4z

2

)
(0)

different ways in which a sequence of n factors ai and n − 1 binary operations ♦i can be well
parenthesized.

The reason for this lemma is that the generating function of the Catalan numbers
C(z) := ∑∞

n=0 Cnz
n satisfies C(z) = z + C2(z) because of the Cauchy product and the

recursion C0 = 0, C1 = 1 and Cn = ∑n−1
l=1 ClCn−l ∀ n � 2. The definition as a formal series

and C0 = 0 result in C(z) = (1 − √
1 − 4z)/2.

The equation Cn = 1
n

(2n−2
n−1

) ∀ n ∈ N
+ is well known.

The quadratic equation for the generating function of Catalan numbers is central to the
solution of Fedosov’s fixed-point equation with a similar structure.

To distinguish all different parentheses numbering them by (a1♦1 · · · ♦n−1an)p or just
(a)♦n

p if ai = a and ♦i = ♦ with 1 � p � Cn makes sense.

Theorem 2.2.2. The Fedosov derivation D is

D = −δ + ∂ +
i

λ

⎡
⎣ ∞∑

n=1

Cn∑
p=1

(
1

1 − δ−1∂
δ−1( + R)

)( i
2λ

1
1−δ−1∂

δ−1[ · , · ])n

p

, ˙

⎤
⎦

Proof. The unique fixed point R,S of the standard ‘quadratic’ contraction mapping
Q : W (2) ⊗ �1 → W (2) ⊗ �1 defined by

Q(a) := R,S + (a)
♦2
1

is required.

7
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By degree counting

♦ : (W (2+nl) ⊗ �1) × (W (2+nr ) ⊗ �1) → W (3+nl+nr ) ⊗ �1,

and

(R,S)♦(1+n)
p ∈ W (2+n) ⊗ �1

is obvious.
Induction over N shows that the Banach fixed-point iteration is

QN+1(0) = R,S + (R,S + (R,S + (. . . (R,S + (︸ ︷︷ ︸
N

R,S)
♦2
1 )

♦2
1 . . .)

♦2
1 )

♦2
1 )

♦2
1 .

In this non-associative setting the right suggestion is to take all different parentheses.
Because of the Catalan recursion it is in some sense a universal formula that by

R := ∑∞
n=1

∑Cn

p=1(R)♦n
p , if it is convergent, a fixed point R of a standard ‘quadratic’ fixed-

point equation of the form R = R + (R)
♦2
1 is defined. The following calculation shows that

the unique fixed point R,S ∈ W (2) ⊗ �1 of the Fedosov fixed-point equation is

R,S :=
∞∑

n=1

Cn∑
p=1

(
1

1 − δ−1∂
(δS + δ−1( + R))

)( i
2λ

1
1−δ−1∂

δ−1[ · , · ])n

p

.

First of all limN→∞
∑N

n=1

∑Cn

p=1(R,S)♦n
p ∈ W (2) ⊗ �1 is clearly convergent and well

defined in the Deg-adic topology:

Q(R,S) = Q

⎛
⎝ lim

N→∞

N∑
n=1

Cn∑
p=1

(R,S)♦n
p

⎞
⎠ = lim

N→∞
Q

(
N∑

n=1

Cn∑
p=1

(R,S)♦n
p

)

= (R,S)
♦1
1 + lim

N→∞

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
nl,r ∈N+

nl +nr �N+1
1�pl,r �Cnl,r

(R,S)♦nl

pl
♦(R,S)♦nr

pr
+

∑
1�nl,r �N

nl +nr �N+2
1�pl,r �Cnl,r

(R,S)♦nl

pl
♦(R,S)♦nr

pr

⎞
⎟⎟⎟⎟⎠ .

Because of

(R,S)♦(2+N)
p ∈ W (3+N) ⊗ �1

the last term converges to zero in the Deg-adic topology and the calculation results in

Q(R,S) = (R,S)
♦1
1 +

∑
nl,r ∈N+ , n�2

nl +nr =n

1�pl,r �Cnl,r

(R,S)♦nl

pl
♦(R,S)♦nr

pr
= R,S .

�

3. The Fedosov construction for C
n, D

n and CP
n

The deformation quantization of the complex projective space CP
n is from a physical point of

view an interesting example for the reduced phase space of an isotropic harmonic oscillator
with n + 1 degrees of freedom.

8
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3.1. The Fedosov differential for C
n, D

n and CP
n

Theorem 3.1.1. For a Kaehler manifold of constant holomorphic sectional curvature C, Wick
case of Fedosov construction and every formal power series f (λ) ∈ C[[λ]] the flat connection
D−4λf (λ)ω is

D−4λf (λ)ω = ∂ − 1

2λ

[ ∞∑
n=0

(−1)n

(∑n
l=0(−1)l

(
n

l

)√
1 − 4λ(f (λ) + lC)

n!(2λ)n

)
g∨nρ, . . .

]
,

where ρ and g∨nρ denote ρ = gij (dzi ⊗ dz
j − dz

j ⊗ dzi) and g∨nρ = g ∨ . . . ∨ g︸ ︷︷ ︸
n

·ρ.

Proof. At first the super derivation δ can be written as a quasi inner derivation δ = 1
2λ

[ρ, · ].
It is common sense [11] that the curvature tensor of a Kaehler manifold M of constant

holomorphic sectional curvature C satisfies

Rklij = −C(gklgij + gkjgli),

and M is holomorphically isometric to C
n, D

n or the complex projective space CP
n if C = 0,

C < 0 or C > 0 if M is simply connected.

Proposition 3.1.2. If ∇X = ∇XR = 0 for all X ∈ �∞(T M) the fixed point R only has
odd numbers of total degree Deg � 3, is likewise covariant constant and given by

R =
∞∑

n=1

Cn∑
k=1

(δ−1(R + ))
( i

2λ
δ−1[ · , · ])n

p .

The proof of this proposition is based on the two facts that ∇X is a ◦� derivation
and commutes with δ−1. These facts imply that the geometric series (id − δ−1∂)−1 in
theorem 2.2.2 break off to the identity.

That the even numbers of total degree Deg � 4 vanish is easy to prove by induction over
the total degree, because δ−1( + R) only has odd numbers of total degree Deg � 3.

For

f := 2λf (λ)
1

i
gij dzi ∧ dzj = −4λf (λ)ω ∈ λ�∞(�2T ∗M)[[λ]],

the proposition 3.1.2 and Rklij = −C(gklgij + gkjgli) imply

Rf
=

∞∑
n=1

Cn∑
k=1

(
2λf (λ)

1

2i
g∨0ρ +

C

2i
g∨1ρ

)( i
2λ

δ−1[ · , · ])n

p
.

Only the Kaehler metric and insertion operators appear in this equation.

Proposition 3.1.3.

g∨n1ρ
( i

2λ
δ−1[ · , · ]

)
g∨n2ρ = i

min{n1,n2}∑
n=0

(2λ)nn!

(
n1

n

)(
n2

n

)
g∨n1+n2−nρ.

With the identity

n!

(n1 + n2 + 2 − n)

[(
n2

n

)(
n1

n − 1

)
+

(
n2

n − 1

)(
n1

n

)
+

(
n1

n − 1

)(
n2

n − 1

)]

= (n − 1)!

(
n1

n − 1

)(
n2

n − 1

)
,

for n, n1, n2 ∈ N the proof of the proposition is a straightforward calculation.

9
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A projection of the proposition 3.1.3 on degλ = 0 and calculation results in a formula for
the classical part of Rf

:

Rf

2n+1
0

= Cn

i

(
C

2

)n

g∨nρ.

The two propositions 3.1.2 and 3.1.3, taken together, imply

Rf
=

∞∑
n=0

Cn(2λ)g∨nρ

with Cn(2λ) ∈ C[[λ]].
The explicit combinatoric of proposition 3.1.3 and the ‘quadratic’ fixed-point equation

result in the recursion

C0(2λ) = 1 ± √
1 − 4λf (λ)

2i
,

and

Cn±(2λ) = −bn ±√b2
n − 4i(2λ)nn!cn

2i(2λ)nn!
∀n � 1,

where bn and cn are

bn = −1 + 2i
n−1∑
n1=0

Cn1(2λ)(2λ)n1n1!

(
n

n1

)
and

cn = i
n−1∑

n1,n2=1

Cn1(2λ)Cn2(2λ)(2λ)n1+n2−n(n1 + n2 − n)!

(
n1

n − n2

)(
n2

n − n1

)
.

The equation

Cn(2λ) = (−1)n+1

(∑n
l=0(−1)l

(
n

l

)√
1 − 4λ(f (λ) + lC)

2in!(2λ)n

)
∀n � 1

can be proved by induction.
At first the well-known fact

n∑
m=0

(−1)mmk

(
n

m

)
= 0,

if n ∈ N
+ and k ∈ N with k < n, is locking out principal Laurent parts of Cn(2λ).

The so-called trinomial revision(
h

m

)(
m

k

)
=
(

h

k

)(
h − k

m − k

)
and a lemma known as orthogonality

m2∑
m=m1

(−1)m1+m

(
m2

m

)(
m

m1

)
= δm2

m1

if m1,m2 ∈ N, are helpful for computing in the inductive step.
Some substitutions and the orthogonality by induction over n show the following

proposition, which is helpful for the calculation of the discriminant in the inductive step.

Proposition 3.1.4. If l1, l2 ∈ N, n ∈ N
+ and 0 � l1, l2 � n,(

n + 1

l1

)
−

n∑
n1=l1

n∑
n2=l2

(−1)n1+n2

(
n + 1 − l2

n + 1 − n2

)(
n2

n + 1 − n1

)(
n1

l1

)
= (−1)n+l1δ

l1
l2
. �

10
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3.2. Fedosov star products for C
n, D

n and CP
n

Theorem 3.2.1. For a formal power series f (λ) ∈ C[[λ]], Wick case and the closed two-
form f := −4λf (λ)ω ∈ λ�∞(�2T ∗M)[[λ]] the purely holomorphic part πzτf

(h) and the
purely anti-holomorphic part πzτf

(g) of the Fedosov–Taylor series on Kaehler manifolds of
constant holomorphic sectional curvature C are

πzτf
(h) =

∞∑
n=0

(
n−1∏
l=0

1√
1 − 4λ(f (λ) + lC)

)(
δ−1
z ∂z

)n
h

and

πzτf
(g) =

∞∑
n=0

(
n−1∏
l=0

1√
1 − 4λ(f (λ) + lC)

)(
δ−1
z ∂z

)n
g.

Proof. According to Neumaier [16] the purely holomorphic part πzτf
(h) and the purely

anti-holomorphic part πzτf
(g) of the Fedosov–Taylor series satisfy independent fixed-point

equations in special cases.

Lemma 3.2.2.

1. If πzRWick = 0, then πzτwick(h) ∀ h ∈ C∞(M)[[λ]] satisfies

πzτwick(h) = h + δ−1
z

(
∂zπzτwick(h) − i

λ
πz(πzτwick(h) ◦wick RWick)

)
.

2. If πzRWick = 0, then πzτwick(g) ∀ g ∈ C∞(M)[[λ]] satisfies the equation

πzτwick(g) = g + δ−1
z

(
∂zπzτwick(g) +

i

λ
πz(RWick ◦wick πzτwick(g))

)
.

The next proposition is a test of the fiberwise operations i
λ
δ−1
z πz[g∨mρ, · ] and

i
λ
δ−1
z πz[g∨mρ, · ] on symmetric and purely holomorphic or purely anti-holomorphic elements.

Proposition 3.2.3.

1. If S ∈ �∞(∨sT ∗M) with πzS = S, then

− i

λ
δ−1
z πz(S ◦� g∨mρ) = i2(2λ)mm!

(
s − 1

m

)
S.

2. If S ∈ �∞(∨sT ∗M) with πzS = S, then

+
i

λ
δ−1
z πz(g

∨mρ ◦� S) = i2(2λ)mm!

(
s − 1

m

)
S.

This proposition again follows by a straightforward calculation and implies

πzτf
(h) =

∞∑
n=0

Tn(2λ)
(
δ−1
z ∂z

)n
h and πzτf

(g) =
∞∑

n=0

T n(2λ)
(
δ−1
z ∂z

)n
g.

The fixed-point equations of Neumaier 3.2.2, theorem 3.1.1, proposition 3.2.3 and the
orthogonality, taken together, yield the recursion

To(2λ) = 1 = T 0(2λ)

and

Tn−1(2λ) =
√

1 − 4λ(f (λ) + (n − 1)C)Tn(2λ) = T n−1(2λ)

∀ n � 1. �

11
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Neumaier showed in [16] that Fedosov’s construction on a pseudo-Kaehler manifold is
universal in the sense that it yields all star products of Wick type.

Another result in [16] is that the purely holomorphic part πzτwick(h) and the purely anti-
holomorphic part πzτwick(g) of the Fedosov–Taylor series are sufficient for calculating the
Wick-type star product by

h �wick g = σ(πzτwick(h) ◦wick πzτwick(g)).

The explicit formulae of theorem 3.2.1 finally result in

Theorem 3.2.4. For a Kaehler manifold M of constant holomorphic sectional curvature C
and the closed two-form f := −4λf (λ)ω ∈ λ�∞(�2T ∗M)[[λ]] the Fedosov Wick-type star
product �f

C∞(M)[[λ]] × C∞(M)[[λ]] → C∞(M)[[λ]] is

h �f
g =

∞∑
n=0

(2λ)n

n!

(
n−1∏
l=0

1

1 − 4λ(f (λ) + lC)

)
μ ◦ P n

((
δ−1
z ∂z

)n
h ⊗ (δ−1

z ∂z

)n
g
)
.

4. Conclusion

A non-recursive formula for the unique solution of Fedosov’s ‘quadratic’ fixed-point equation
in the general case was shown. This result is of interest because this fixed point is the corner
stone in Fedosov’s deformation quantization of symplectic manifolds and offers a method
to formulate index theorems [9, 10, 17]. Also the proof could be interesting to deal with
nonlinear, in some sense ‘quadratic’ fixed-point equations.

An adapted example for Kaehler manifolds of constant holomorphic sectional curvature
C was considered in detail. This example is the first non-zero curvature example of a Fedosov
construction.

A classical flat super derivation, well defined in the degs-adic topology and with familiar
shape in −1 � degs � 0 likewise the classical part of the Fedosov super derivation, was
introduced.
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